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Abstract

This paper presents a spectral-Tchebychev technique for solving linear and nonlinear beam problems. The technique

uses Tchebychev polynomials as spatial basis functions, and applies Galerkin’s method to obtain the spatially discretized

equations of motion. Unlike alternative techniques that require different admissible functions for each different set of

boundary conditions, the spectral-Tchebychev technique incorporates the boundary conditions into the derivation, and

thereby enables the utilization of the solution for any linear boundary conditions without re-derivation. Furthermore, the

proposed technique produces symmetric system matrices for self-adjoint problems. In this work, the spectral-Tchebychev

solutions for Euler–Bernoulli and Timoshenko beams are derived. The convergence and accuracy characteristics of the

spectral-Tchebychev technique is studied by solving eigenvalue problems with different boundary conditions. It is found

that the convergence is exponential, and a small number of polynomials is sufficient to obtain machine-precision accuracy.

The application of the technique is demonstrated by solving: (1) eigenvalue problems for tapered Timoshenko beams with

different boundary conditions, taper ratios, and beam lengths; (2) an Euler–Bernoulli beam problem with spatially and

temporally varying forcing, elastic boundary, and damping; (3) large-deflection (nonlinear) Euler–Bernoulli beam

problems with different boundary conditions; and (4) a micro-beam problem with nonlinear electrostatic excitation. The

results obtained from the spectral-Tchebychev solutions are seen to be in excellent agreement with those presented in the

literature.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In the presence of nonuniform parameters and complicated boundary conditions, the spectral–temporal
boundary-value problems that describe the distributed-parameter models of beam dynamics do not lend
themselves to closed-form analytical solutions. Therefore, a wide range of approximate solutions have been
derived to solve beam problems. Approximate solutions include approaches for discretization of the spatial
part of the problem. A commonly used method for spatial discretization is to describe the spatial dependence
with an assumed solution in a series form with known functions. The use of the assumed solutions in
ee front matter r 2008 Elsevier Ltd. All rights reserved.

v.2008.09.040

ing author. Tel.: +1412 2689890.

ess: ozdoganlar@cmu.edu (O.B. Ozdoganlar).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2008.09.040
mailto:ozdoganlar@cmu.edu


ARTICLE IN PRESS
B. Yagci et al. / Journal of Sound and Vibration 321 (2009) 375–404376
conjunction with various integrations reduces the distributed-parameter problem to a discrete problem of
finding the unknown coefficients of the series expansion.

The series discretization methods can be classified into two broad categories: variational approaches and the
method of weighted residuals. The most common variational approach is the Rayleigh–Ritz method [1–7].
Depending on the type of formulation, the trial functions are chosen from either comparison or admissible
functions. The method is imposed by determining the combination of the trial functions that will render
Rayleigh’s quotient stationary. Although the Rayleigh–Ritz method is a powerful approach, it is only
applicable to linear self-adjoint systems [8]. Furthermore, the method does not provide direct solution for the
problems with forcing functions, but rather necessitates the use of the modal expansion technique to obtain
solutions. In addition, when the boundary conditions are complex, finding trial functions that are admissible
functions poses considerable challenges.

A closely related technique is the assumed modes method [9–14]. In this method, a series form of
eigenfunctions is assumed. However, instead of using a variational approach directly, Lagrange’s equations
are utilized to obtain the spatially discretized equations of motion. Indeed, since Lagrange’s equations are
derived using a variational approach (Hamilton’s principle), the assumed modes method is also considered as
a variational approach. Accordingly, the technique is only applicable to self-adjoint systems.

Unlike the Rayleigh–Ritz techniques, the method of weighted residuals can directly work with the partial
differential equation [8]. An approximate solution is considered in the form of a finite series with trial
functions from the space of admissible functions. To minimize the error, or the residual, arising from the
truncation of the infinite series, the inner product of the residuals and weighting functions (also from the space
of admissible functions) is required to vanish. The most common method of weighted residuals is Galerkin’s
method [15–20], in which the weighting functions coincide with the trial functions. The main advantages of the
method of weighted residuals include its applicability to both self-adjoint and nonself-adjoint systems
(including linear and nonlinear problems); and its capability to directly solve problems with forcing functions
without resorting to the modal expansion technique.

The convergence and accuracy of the method of weighted residuals depend greatly on the choice trial
functions. To make the trial and weighting functions admissible, common applications of the weighted
residuals technique require each function to satisfy the geometric boundary conditions. In the previous works,
researchers used power series [20,21]; trigonometric series [21]; and special polynomials such as Legendre [15]
and Hermitian polynomials [19] as trial functions. Some researchers used the mode shapes from a simplified
version of the original problem as trial functions [16–18]. In order to satisfy the geometric boundary
conditions, supplementary polynomial terms are added to the basis functions. In doing so, however, a new
formulation was required (i.e., new trial functions must be selected) for each problem with different boundary
conditions.

Although generally considered an exact method rather than an approximate method, the dynamic stiffness
matrix technique is worth mentioning here [22–27]. In this powerful technique, a function that satisfies the
spatial differential equations is considered with undetermined coefficients. The geometric and natural
boundary conditions are then described in separate matrix forms. Solution of the coefficient matrix from the
geometric boundary conditions and substitution of this solution to the natural boundary condition matrix
equation yield the dynamic stiffness matrix [28]. In general, this solution technique requires solving
transcendental equations to find the eigenvalues rather than using the standard eigenvalue solvers. For beams
with complex geometries and boundary conditions, determination of eigenvalues from the dynamic stiffness
matrix necessitates the use of special algorithms, such as that of William–Wittrick [29]. The derivation of the
dynamic stiffness matrix can be carried out numerically or analytically, latter of which requires lengthily
symbolic manipulations. For each boundary condition and beam type (e.g., tapered or twisted beams), a
different dynamic stiffness matrix is required. The dynamic stiffness matrix method has been used to solve
various problems including coupled bending/torsional motions [30–32], spinning beam dynamics [33,34], and
twisted beams [35].

Due to their recursive nature and fast convergence characteristics, Tchebychev orthogonal polynomials
have been used in the literature for the solution of boundary-value problems [36–40,7,41]. Lovejoy and
Kapania [40] and Singhvi and Kapania [7] used Tchebychev polynomials with Rayleigh–Ritz method. The
geometric BCs were satisfied by using fictitious springs with sufficiently high stiffness. Singhvi and Kapania [7]
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showed that orthogonal Tchebychev polynomials work more efficiently than simple polynomials. Lee and
Schultz [39] applied Tchebychev collocation and pseudo-spectral weighted residual method to solve the
vibration of Timoshenko beams and Mindlin plates. Ruta [36–38] also utilized Tchebychev polynomials to
solve various beam problems. However, in Ruta’s work the self-adjointness was not preserved after the
discretization, resulting in complex natural frequencies. Additionally, since the boundary conditions were not
fully satisfied, the higher modes could not be accurately determined. Gottlieb and Orszag [41] compared the
convergence characteristics of various recursive polynomials, and concluded that the Tchebychev polynomials
were superior especially in handling the boundaries.

In this paper, a new approach for solving linear and nonlinear beam problems in structural
dynamics is presented. This spectral-Tchebychev technique uses Tchebychev polynomials as the basis
for the spatial discretization. A weak convergence similar to that in Galerkin’s method is considered.
However, unlike the alternative approaches, the spectral-Tchebychev technique incorporates geometric
and natural boundary conditions through projection matrices (basis recombination) as an integral part
of the approach, rather than requiring the trial functions to be chosen from admissible functions. This
allows formulating the solution with generic boundary conditions, and enables obtaining simple solutions
that are applicable to a wide range of linear and nonlinear problems. Using the spectral-Tchebychev
technique, the forced response can be obtained directly, without resorting to the modal expansion
technique. Most importantly, the technique produces symmetric system matrices for the self-adjoint problems,
i.e., the technique is equivalent to variational approaches for self-adjoint problems. This symmetry results
from the fact that derivatives, integrals and inner products are computed exactly for any function that can be
expressed by N-Tchebychev polynomials. Furthermore, the technique is applicable to nonself-adjoint
problems.

The paper first describes the notation and briefly reviews the properties of Tchebychev polynomials and
expansions. Next, the spectral-Tchebychev technique is explained. To simplify the explanation, the wave
equation with generic boundary conditions and the nonuniform parameter distribution is solved using the
spectral-Tchebychev technique. The derivation of the spectral-Tchebychev technique for the Euler–Bernoulli
and Timoshenko beams with generic boundary conditions are then described. This is followed by an
evaluation of the numerical accuracy and convergence of the spectral-Tchebychev technique by considering
eigenvalue problems for both Euler–Bernoulli and Timoshenko beams with different boundary conditions.
The spectral-Tchebychev technique is then applied to an Euler–Bernoulli beam with an elastic boundary and
spatially varying forcing function; and to a tapered Timoshenko beam with different boundary conditions and
taper ratios. Application of the technique to nonlinear problems is illustrated by two examples from the
literature, including a large-deflection beam with base excitation, and an electrostatically excited micro-beam.
In both cases, the results obtained using the spectral-Tchebychev technique are in excellent agreement with the
experimental and modeling results given in the literature.
2. Summary of notation

In this section, the basic properties of Tchebychev polynomials and Tchebychev expansions that can be
found in the literature (e.g., Refs. [41–43]) are briefly reviewed, and the notation that will be used throughout
the paper is introduced.
2.1. Tchebychev polynomials and Tchebychev expansion

The Tchebychev polynomials are recursive orthogonal polynomials that can be described as

TkðxÞ ¼ cosðk cos�1ðxÞÞ for k ¼ 0; 1; 2; . . . , (1)

where k is an integer [41]. Although defined for all x, Tchebychev polynomials are a stable representation
only on the ð�1; 1Þ interval. In this interval, they form a complete set, which means that any square-
integrable function yðxÞ can be represented by a series expansion using the Tchebychev polynomials as
the basis.
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Since most functions of interest lie on the interval ð‘1; ‘2Þ instead of ð�1; 1Þ, a mapping between x 2 ð‘1; ‘2Þ
and x 2 ð�1; 1Þ is defined as

xðxÞ ¼ x
‘2 � ‘1

2
þ
‘2 þ ‘1

2
and xðxÞ ¼

2

‘2 � ‘1
x�

‘2 þ ‘1
‘2 � ‘1

. (2)

When considering functions on the interval ð‘1; ‘2Þ, the scaled Tchebychev polynomials TkðxÞ ¼ TkðxðxÞÞ are
used.

A function yðxÞ 2 ð‘1; ‘2Þ can be expressed using the Tchebychev series expansion as

yðxÞ ¼
X1
k¼0

akTkðxÞ. (3)

If a square-integrable function yðxÞ is also infinitely differentiable on the interval ð‘1; ‘2Þ, then the coefficients
ak in Tchebychev expansion decay exponentially with increasing k value. This exponential decay is a result of
the fact that Tchebychev polynomials are eigenfunctions of the singular Sturm–Liouville problem [41].
Although the Legendre, Hermite, and Laguerre polynomials are also eigenfunctions of the Sturm–Liouville
problem, Tchebychev polynomials are more effective in handling the boundaries [41]. Therefore, if the
function yðxÞ is well behaved on the interval ð‘1; ‘2Þ (i.e., it does not possess a narrow spike or a region of very
large derivatives), a relatively small number of terms will be sufficient to accurately represent the function.
Thus, for numerical solutions, the function yðxÞ can be expressed as

yN ðxÞ ¼
XN�1
k¼0

akTkðxÞ, (4)

where N is the number of polynomials used for the truncated expansion. The exponential convergence
behavior of the Tchebychev expansion allows accurate representation of functions and estimation of the error
caused by the truncation. For brevity of notation, the subscript N in yN will be omitted in the remainder of the
paper.

It is important to note here that a continuous function that is expressible by N-Tchebychev polynomials can
be described exactly by N coefficients of Tchebychev expansion. While this representation includes N discrete
values, since it describes the sum of continuous Tchebychev polynomials, it must still be viewed as a
continuous function.

2.2. Gauss– Lobatto sampling and Tchebychev expansion coefficients

For numerical calculations, a continuous function is represented by a vector of points sampled (spatially) at
certain increments. Irrespective of the way the function is sampled, if the function is expressible by
N-Tchebychev polynomials and spatially sampled at N points fxkg

N
k¼1, there exists a one-to-one mapping

between the expansion coefficients ak and the sampled points yk ¼ yðxkÞ. This means that a function can be
defined by either using coefficients ak or giving its values yk ¼ yðxkÞ at the Gauss–Lobatto points. The
relationship between the vector of sampled function y ¼ fykg and the (truncated) Tchebychev expansion
coefficient vector a ¼ fakg can be written as

a ¼ CFy, (5)

where CF is an N �N forward transformation matrix (see Appendix A). A backward transformation can also be
written as

y ¼ CBa, (6)

where

CBCF ¼ CFCB ¼ I, (7)

and I is the identity matrix.
The relationship between the sampled points and the Tchebychev coefficients, i.e., CB and CF

matrices, become simpler and easier to compute if the sampling is performed at the Gauss–Lobatto points
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described as

pk ¼ cos
ðk � 1Þp
N � 1

� �
; k ¼ 1; 2; . . . ;N (8)

defined on the ð�1; 1Þ interval. The scaled Gauss–Lobatto points are defined on the interval ð‘1; ‘2Þ as

xk ¼ xðpkÞ, (9)

where xðxÞ is the mapping given in Eq. (2).

2.3. Differentiation, integration, and inner products

The truncated Tchebychev expansion of the spatial derivative y0 of the function y can be written as

y0ðxÞ ¼
XN�1
k¼0

bkTkðxÞ. (10)

It can be shown that (see Appendix B) the coefficients ak and bk are related through a differentiation matrix D

in the Tchebychev space as

b ¼ Da. (11)

Similarly, the expansion coefficients a
ðnÞ
k of the nth spatial derivative of y can be given as

aðnÞ ¼ Dna. (12)

Using the transformation matrices described above, relationship in the physical (sampled) space can be
obtained as

yðnÞ ¼ CBa
ðnÞ ¼ CBD

nCFy ¼ Qny, (13)

where yðnÞ is the sampled vector for the nth-derivative of yðxÞ, andQn is the nth derivative matrix. If yðxÞ can be
expressed exactly using N-Tchebychev polynomials, then yðnÞðxÞ can be computed exactly from Eq. (13).

The definite integral of a function yðxÞ can be described asZ ‘2

‘1

yðxÞdx ¼ vTa, (14)

where v is the definite integral vector and a is the coefficient vector given in Eq. (5) (see Appendix C). If yðxÞ is
expressed exactly using N-Tchebychev polynomials, the integral of yðxÞ in the interval ð‘1; ‘2Þ can then be
computed exactly from Eq. (14).

The inner product of two functions yðxÞ and f ðxÞ that can be expressed by Tchebychev polynomials asZ ‘2

‘1

f ðxÞgðxÞdx ¼ fTVg, (15)

where V is the inner-product matrix (see Appendix D). Again, if N-polynomial representation of the two
functions is exact, this integral is computed exactly through Eq. (15).

The recursive relations used to compute the transformation (CF , CB), derivative (D), definite integral (v),
and inner product (V) matrices are provided in the Appendix section.

3. Method development—the wave equation

This section describes the spectral-Tchebychev technique for solving the wave equation. The steps described
below for the derivation of the spectral-Tchebychev technique will be applied in a similar fashion to solve
beam equations.

The wave equation that describes the longitudinal vibrations of a beam can be expressed as

rA €y� ¼ ðEAy�0Þ0 þ f �ðx�; t�Þ defined on 0ox�oL, (16)
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where r is the density, A is the cross-sectional area, E is Young’s modulus, L is the length of the beam, y is the
axial deflection and f is the forcing function, prime (0) indicates the spatial derivative, and dot (:) indicates the
temporal derivative. Starred letters represent the dimensional parameters. When the parameters are uniformly
distributed along the beam, the wave equation can be nondimensionalized as

€y ¼ my00 þ f defined on 0oxo1, (17)

subjected to the boundary conditions

ðb10y0 þ b00yÞjx¼0 ¼ a0ðtÞ; ðb1Ly0 þ b0LyÞjx¼L ¼ aLðtÞ, (18)

where the nondimensional parameters are defined as

x ¼ x�=L; y ¼ y�=L; t ¼ t�o0; m ¼
E

rL2o2
0

; f ¼
f �

rALo2
0

. (19)

Here o0 is a frequency (commonly chosen as the first natural frequency) used for nondimensionalizing the
time. b’s are the constant coefficients of the spatial part of the boundary conditions and a’s describe the
temporal part of the boundary conditions. By specifying the coefficients b and aðtÞ, Eq. (18) can be used to
prescribe various linear boundary conditions. The system described in Eqs. (17) and (18) is a self-adjoint
system.

It should be noted here that the spectral-Tchebychev technique presented here is applicable to other types
of linear boundary conditions (e.g., mixed boundary conditions) that are not covered by the form given in
Eq. (18). The most generic linear boundary conditions can be written as

X1
k¼0

X
p¼0;L

Ukpsy
ðkÞ ¼ asðtÞ, (20)

where Ukps’s are the constant coefficients of the spatial part of the boundary conditions and as is the temporal
part of the boundary conditions. Condition p denotes the particular boundary (p ¼ 0;L), k is the order of
derivative, and s is the number of the boundary condition (i.e., s ¼ 1; 2 since the wave equation is second-
order). Although with Eq. (20) any set of linear boundary conditions can be considered in the spectral-
Tchebychev technique, Eq. (18) is used in the rest of the derivation to simplify the discussion and to retain the
self-adjointness of the problem.

The spatially discretized version of our problem arises from assuming that the function is expressible in
terms of N scaled Tchebychev polynomials. As discussed in Section 2.2, any such function can be defined by
giving its values at the Gauss–Lobatto points. Therefore, the spatially sampled version of Eq. (17) is written as

€y ¼ my00 þ f, (21)

where the vectors (lower-case, bold) are obtained by spatially sampling the continuous functions at the
Gauss–Lobatto points. This equation is further manipulated by describing the spatial derivatives using the
properties of Tchebychev expansion as

€y ¼ mQ2yþ f, (22)

where Q2 is the second-derivative matrix (see Eq. (13)). Similarly, the boundary conditions (from Eq. (18)) can
be written as

by ¼ a, (23)

where

b ¼
b10e

T
1Q1 þ b00e

T
1

b1Le
T
NQ1 þ b0Le

T
N

" #
and a ¼

a0ðtÞ

aLðtÞ

( )
. (24)

Here, Q1 is the first-derivative matrix (see Eq. (13)), and ej is an N-vector whose jth element is unity and all
other elements are zeros.
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An effective way of imposing the boundary condition is to express y using projection matrices as

y ¼ Pzþ Ra, (25)

where P and R are N � ðN �MÞ and N �M projection matrices, respectively, and z is an ðN �MÞ-vector,
where M is the number of boundary conditions. This procedure is also referred to as basis recombination.
Eq. (25) allows solving for z, which satisfies only the homogeneous boundary conditions, while ensuring y

satisfies all the boundary conditions. Numerically, P and Rmatrices are determined using the singular-value of
b (see Appendix F for details). Substituting Eq. (25) into Eq. (22) gives

P€zþ R€a ¼ mQ2ðPzþ RaÞ þ f. (26)

It should be recognized that Eq. (26) is an approximation. The error, or residual, arising from this
approximation can be expressed as

/ ¼ P€zþ R€a� mQ2ðPzþ RaÞ � f. (27)

In order to minimize the error, the weighted residuals method will be used, and the inner product of the
weighted residuals will be required to vanish, viz.,Z ‘2

‘1

yðxÞfðxÞdx ¼ 0, (28)

where yðxÞ are the weighting functions. If yðxÞ are also chosen to coincide with the trial functions
(i.e., expressible by an N-polynomial Tchebychev expansion), this particular method of weighted residuals is
referred to as Galerkin’s method [8]. Using the inner-product expression from Section 2.3, Eq. (28) is rewritten
as the Z ‘2

‘1

yðxÞfðxÞdx ¼ hTV/. (29)

Here, it will be required that the weighting functions satisfy the homogeneous boundary conditions.
Mathematically, this conditions can be expressed as h ¼ Ph̄ considering Eq. (25).

Substituting Eq. (27) into Eq. (29), after rearranging

h̄TfPTV½ðP€z� mQ2PzÞ � ðf � R€aþ mQ2RaÞ�g ¼ 0. (30)

Since this equation must be satisfied for arbitrary h̄, the quantity inside the square brackets must be zero, i.e.,

PTVP€z� mPTVQ2Pz ¼ PTVf � PTVR€aþ mPTVQ2Ra. (31)

This equation can be expressed in the form

M€zþ Kz ¼ f̂, (32)

where

M ¼ PTVP; K ¼ �mPTVQ2P

and

f̂ ¼ PTVf � PTVR€aþ mPTVQ2Ra. (33)

The M and K matrices in these expressions are guaranteed to be symmetric for self-adjoint problems.
A detailed explanation on how self-adjointness is preserved is given in Appendix E.

To obtain the numerical solution, Eq. (32) can be represented in the state-space form, and an (temporal)
integration algorithm can be used. To represent the system in the state-space form, the transformation
z ¼M�1=2p will be defined, and Eq. (32) will be rewritten as

MM�1=2 €pþ KM�1=2p ¼ f̂. (34)

Left-multiplying both sides by M�1=2 results in

I€pþM�1=2KM�1=2p ¼M�1=2f̂, (35)
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whereM�1=2KM�1=2 is guaranteed to be symmetric for any nonsingular symmetric matrix K. When calculating
M�1=2, it is advisable to write

M ¼MLMT and M�1=2 ¼ML�1=2MT, (36)

where M is the eigenvector matrix of M and L is a diagonal matrix with the eigenvalues of M in its diagonal.
The state-space form can now be written as

_q ¼ Aqþ Bf̂ and p ¼ Gq, (37)

where

A ¼
0 I

�M�1=2KM�1=2 0

� �
; B ¼

0

M�1=2

� �
and G ¼ ½I 0�. (38)

To obtain the solution of the boundary-value problem given in Eq. (17), q is solved and p is
determined from Eq. (37). Substituting p in z ¼M�1=2p, and subsequently using Eq. (25), y is obtained.
If continuous functions are sought, the associated Tchebychev expansion coefficients ak can be found
from Eq. (5), and the solution can be written as a continuous function through the Tchebychev
expansion.

The spectral-Tchebychev technique can be extended to the problems with spatially varying parameters.
To handle this situation without compromising the symmetry of system matrices, the application
of the spectral-Tchebychev technique is modified. To illustrate this modification, the cross-sectional
area in Eq. (16) is considered to vary with x�. The new nondimensional equation of motion is
written as

A €y ¼ mp½Ay0�0 þ f defined on 0oxo1, (39)

where

x ¼ x�=L; y ¼ y�=L; t ¼ t�o0; A ¼ Aðx�Þ=L2, (40)

mp ¼
E

rL2o2
0

; f ¼
f �

rL3o2
0

. (41)

After applying the chain rule, Eq. (39) becomes

A €y ¼ mp½A
0y0 þ Ay00� þ f defined on 0oxo1. (42)

To retain the symmetry while handling this problem, new inner products are defined asZ ‘2

‘1

yðxÞfðxÞAðxÞdx ¼ hTVA/, (43)

Z ‘2

‘1

yðxÞfðxÞA0ðxÞdx ¼ hTVA0/. (44)

The derivative of the area is computed in the spatially discretized domain by following Eq. (12)
as A0 ¼ Q1A. These inner-product matrices are calculated exactly for functions that are described by
N-Tchebychev polynomials. Using these inner products, Eq. (42) becomes

PTVAP€z� mpP
TðVA0Q1 þ VAQ2ÞPz ¼ PTVf � PTVAR€aþ mpP

TðVA0Q1 þ VAQ2ÞRa, (45)

which can be represented in the same form as Eq. (32) by defining

M ¼ PTVAP; K ¼ �mpP
TðVA0Q1 þ VAQ2ÞP

and

f̂ ¼ PTVf � PTVAR€aþ mpP
TðVA0Q1 þ VAQ2ÞRa. (46)

The M and K matrices given above are guaranteed to be symmetric for self-adjoint systems.
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In summary, the dependent variable yðx; tÞ of the boundary-value problem was described by a series
expansion using N-Tchebychev polynomials as the spatial basis functions. Instead of imposing the boundary
conditions on individual trial functions, a projection is defined to incorporate the boundary conditions directly
into the derivation. The Galerkin’s method was then used to minimize the residual arising from the truncation
of the infinite series. As a result, a simple matrix equation that describes the spatially discretized version of the
system was derived. The system equations were symmetric for the self-adjoint wave equation, indicating that
the spectral-Tchebychev method is equivalent to variational approaches for the case of self-adjoint problems.
This property is very critical for the numerical stability and efficiency of the technique, and follows from the
exact evaluation of differentiation and inner-product operations using the Tchebychev matrix operators, as
well as the use of Galerkin’s method.

4. Spectral-Tchebychev technique for Euler–Bernoulli and Timoshenko beams

4.1. The Euler– Bernoulli model

The equation of motion for a linear Euler–Bernoulli beam can be given as

rA €y� þ ðEIy00�Þ00 ¼ f �ðx�; t�Þ; 0ox�oL. (47)

For a beam with uniform parameters, the nondimensional form of this equation can be given as

m €yþ y0000 ¼ f ðx; tÞ; 0oxo1 (48)

subjected to the (generic) boundary conditions

ðbij3y
0000 þ bij2y00 þ bij1y

0 þ bij0yÞjx¼xi
¼ aijðtÞ; i ¼ 0;L and j ¼ 1; 2, (49)

where

x ¼ x�=L; y ¼ y�=L; t ¼ t�o0; m ¼
rAo2

0L
4

EI
; f ¼

f �L3

EI
, (50)

and I is the area moment of inertia.
Here yðx; tÞ is the transverse deflection of the beam and f ðx; tÞ is the forcing function. The bijk are the

coefficients of the boundary conditions at the two ends (i ¼ 0;L) of the beam, each end with two boundary
conditions (j ¼ 1; 2).

The sampled version of Eq. (48) can be expressed as

m€yþQ4y ¼ f, (51)

where Q4 is the fourth-derivative matrix. The boundary conditions can be written as

eT1

X3
k¼0

b0jkQky ¼ a0j ; eTN

X3
k¼0

bLjkQky ¼ aLj ; j ¼ 1; 2, (52)

where Q0 ¼ I. Imposing the boundary conditions through the projection matrices as

y ¼ Pzþ Ra, (53)

and substituting into Eq. (51)

mðP€zþ R€aÞ þQ4ðPzþ RaÞ ¼ f. (54)

Applying Galerkin’s method as in Eqs. (28)–(31), the spatially discretized equations of motion becomes

mPTVP€zþ PTVQ4Pz ¼ PTVf �mPTVR€a� PTVQ4Ra, (55)

which can be written in the form

M€zþ Kz ¼ f̂. (56)

This equation is ready for time integration through the state-space method.
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For some combinations of coefficients bijk, the boundary-value problem described in Eqs. (48)–(49) is a self-
adjoint problem. In those cases, the matrices M and K obtained through the spectral-Tchebychev technique
are symmetric. As mentioned earlier, the symmetry is critical for numerical robustness of the solution
technique.
4.2. The Timoshenko beam

As the length-to-thickness ratio reduces, the shear deformation effects that are neglected in the
Euler–Bernoulli formulation become increasingly important. In those cases, the Timoshenko-beam equations,
which contain the shear deformation and rotary inertia effects, are used. The general form of Timoshenko
beam equations are

½ksGAðy�0 � c�Þ�0 � rA €y� ¼ �f �ðx�; t�Þ; 0ox�oL, (57)

ðEIc�0Þ0 þ ksGAðy�0 � c�Þ � rI €c� ¼ �C�ðx�; t�Þ; 0ox�oL. (58)

For a uniform cross-section beam, the nondimensional form of the Timoshenko-beam equations can be
written as

y00 � c0 � w €y ¼ f ðx; tÞ; 0oxo1, (59)

sc00 þ y0 � c� t €c ¼ Cðx; tÞ; 0oxo1, (60)

where

x ¼ x�=L; y ¼ y�=L; t ¼ t�o0; c� ¼ c, (61)

w ¼
rL2o2

0

ksG
; t ¼

rIo2
0

ksGA
; f ¼ �

f �L

ksGA
; s ¼

EI

ksGAL2
; C ¼ �

C�

ksGA
. (62)

Here yðx; tÞ is the nondimensional flexural displacement, cðx; yÞ is the nondimensional slope, f ðx; tÞ is the
applied nondimensional force, and Cðx; tÞ is the applied moment, ks is the shear coefficient, and G is the shear
modulus.

The generic (linear) boundary conditions for this case can be written as

X1
k¼0

by
ijkyðkÞ þ

X1
k¼0

bcijkc
ðkÞ
¼ aijðtÞ, (63)

where the b’s are the coefficients of the boundary conditions at the two ends (i ¼ 0;L) of the beam, each end
with two boundary conditions (j ¼ 1; 2). For example, the boundary conditions for a cantilever beam can be
given by specifying

by
010 ¼ L; bc020 ¼ 1; a01 ¼ a02 ¼ 0,

bcL11 ¼
EI

L
; bcL20 ¼ �ksGA; by

L21 ¼ ksGA; aL1 ¼ aL2 ¼ 0 (64)

and all other b’s are zeros.
Using Tchebychev expansion, the (Gauss–Lobatto) sampled version of the boundary-value problem can be

given as

Q2y�Q1w� w€y ¼ f, (65)

sQ2wþQ1y� w� t €w ¼ W, (66)
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subjected to boundary conditions

eT1

X1
k¼0

½by
0jkQkyþ bc0jkQkw�

 !
¼ a0j ; j ¼ 1; 2, (67)

eTN

X1
k¼0

½by
LjkQkyþ bcLjkQkw�

 !
¼ aLj ; j ¼ 1; 2. (68)

Here, it was assumed that the same number of polynomials (N) was used to express both y and c.
The residuals associated with Eqs. (65) and (66) can be written as

/y ¼ Q2y�Q1w� w€y� f, (69)

/c ¼ sQ2wþQ1y� w� t €w� w. (70)

In order to minimize the error, the weighted residuals will be required to vanish asZ L

0

yyðxÞfyðxÞdx ¼ 0;

Z L

0

ycðxÞfcðxÞdx ¼ 0, (71)

where yyðxÞ and ycðxÞ are the weighting functions. Following Eq. (29), these inner products can be represented
as Z L

0

yyðxÞfyðxÞdx ¼ hTyV/y;

Z L

0

ycðxÞfcðxÞdx ¼ hTcV/c. (72)

Substituting /y and /c

hTy ½VðQ2y�Q1w� w€y� fÞ� ¼ 0, (73)

hTc½VðsQ2wþQ1y� w� t €w�WÞ� ¼ 0. (74)

Defining,

q ¼
y

w

" #
; h ¼

hy

hc

" #
; Vs ¼

V 0

0 V

� �
; f̃ ¼

f

W

� �
, (75)

the boundary-value problem can be written as

hTVsðMs €qþ Ksq� Bsf̃Þ ¼ 0, (76)

where

Ms ¼
�wI 0

0 �tI

� �
; Ks ¼

Q2 �Q1

Q1 sQ2 � I

" #
; Bs ¼

I 0

0 I

� �
. (77)

The term I represents the identity matrix. Similarly, the boundary conditions can be written as

eT1
P1

k¼0 b
y
01kQk eT1

P1
k¼0 b

c
01kQk

eT1
P1

k¼0 b
y
02kQk eT1

P1
k¼0 b

c
02kQk

eTN
P1

k¼0 b
y
L1kQk eTN

P1
k¼0 b

c
L1kQk

eTN
P1

k¼0 b
y
L2kQk eTN

P1
k¼0 b

c
L2kQk

2
666664

3
777775q ¼

a01
a02
aL1

aL1

2
6664

3
7775 ¼ a. (78)

Using the projection matrices as in Eq. (25) and imposing the condition that the weighting functions must
satisfy the homogeneous boundary conditions as / ¼ P/̄, Eq. (76) becomes

h̄TPTVsðMsðP€zþ R€aÞ þ KsðPzþ RaÞ � Bsf̃Þ ¼ 0, (79)
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which entails

PTVsMsP€zþ PTVsKsPz ¼ PTVsBsf̃ � PTVsMsR€a� PTVsKsRa. (80)

This equation is in the general form of

M€zþ Kz ¼ f̂, (81)

which can be numerically integrated using the state-space approach. For some boundary conditions, the
boundary-value problem becomes a self-adjoint problem. For those problems, the system matrices M and K

obtained above through the spectral-Tchebychev technique will be symmetric.

5. Method evaluation

To evaluate the accuracy and convergence of the spectral-Tchebychev solution, natural frequencies of
Euler–Bernoulli and Timoshenko beams were calculated for four different boundary conditions using
increasing number of polynomials. The calculated natural frequencies were compared to those computed from
Newton’s shooting method (with 10�11 resolution) [44].

Figs. 1(a)–(d) provide the error between the spectral-Tchebychev and Newton’s shooting methods for the
first five natural frequencies of an Euler–Bernoulli beam with pinned–pinned, fixed–fixed, fixed–pinned, and
fixed–free boundary conditions, respectively. The parameters of the rectangular beam used for the
computations include a length of L ¼ 0:5m, a width of w ¼ 0:05m, a thickness of h ¼ 0:01m, a density of
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Fig. 2. First five mode shapes and normalized natural frequencies of Euler–Bernoulli beams with various boundary conditions. The

natural frequencies are calculated using spectral-Tchebychev solution and normalized with respect to the first natural frequency o0

obtained from Newton’s shooting method.
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r ¼ 2300 kg=m3, and Young’s modulus of E ¼ 160GPa. The error errN is defined as

errN ¼
joN ;k � lkj

lk

. (82)

Here oN ;k is the kth natural frequency calculated using N-Tchebychev polynomials and lk is the
corresponding natural frequency from Newton’s shooting method. Obtaining spectral-Tchebychev solutions
for different boundary conditions required changing only the b coefficients without need for re-derivation. It
should be noted that due to the nature of projection equation of Eq. (25), the z is an ðN �MÞ-vector where M

is the number of boundary conditions. Therefore, when solving Euler–Bernoulli and Timoshenko beam
problems, four polynomials are needed for satisfying the boundary conditions. Accordingly, calculation of the
kth natural frequency would require a minimum of ðk þMÞ polynomials.

It is seen from Fig. 1 that, as expected, the overall convergence is approximately exponential (the ordinate in
the figure is in logarithmic scale). The step-like convergence is due to the fact that Tchebychev polynomials
add alternating odd and even terms with each increased number of polynomials. Thus, to increase the
accuracy for an even mode (such as the first mode of the pinned–pinned case in Fig. 1(a)) or for an odd mode,
two additional polynomials are required. In each case, an error less than 10�11 for the fifth mode is obtained
by using 20 polynomials.

Another observation from Fig. 1 is that, adding more polynomials after establishing the convergence lowers
the accuracy of the natural frequencies. The reason for the reduced accuracy is the poor numerical condition
of the fourth-derivative matrix D4 for high number of polynomials. To avoid this error, minimum number of
polynomials that will provide the sufficient accuracy should be selected.

Fig. 2 gives the first five mode shapes and associated (nondimensional) natural frequencies obtained for
N ¼ 15 Tchebychev polynomials for Euler–Bernoulli beams with different boundary conditions.

For beams with small aspect ratio, shear deformation and rotary inertia effects become important. For
instance, for a cantilever beam with an aspect ratio of 5, the difference between the first three natural
frequencies of Timoshenko and Euler–Bernoulli beams becomes 3%, 19%, and 40%, considering the
Timoshenko beam natural frequencies as the reference.

Next, the natural frequencies of Timoshenko beams with four different boundary conditions were compared
with those from Newton’s shooting method. Figs. 3(a)–(d) provide the error for the first five natural
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Fig. 4. First five mode shapes and normalized natural frequencies of Timoshenko beams with various boundary conditions. The natural

frequencies are calculated using spectral-Tchebychev solution and normalized with respect to the first natural frequency o0 obtained from

Newton’s shooting method.
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frequencies for Timoshenko beams with pinned–pinned, fixed–fixed, fixed–pinned, and fixed–free boundary
conditions, respectively. In these calculations, a rectangular beam with a length of L ¼ 0:5m, a beam width of
w ¼ 0:2m, a beam thickness of h ¼ 0:1m, a density of r ¼ 2300 kg=m3, Young’s Modulus of E ¼ 160GPa,
Poisson’s ratio of n ¼ 0:25 and a shear factor of ks ¼ 0:833 was used. Shear modulus G is calculated from
G ¼ E=ð2þ 2nÞ. The error between the spectral-Tchebychev solution and Newton’s method was obtained
using Eq. (82).

It is seen from Fig. 3 that the convergence is very rapid. However, the convergence of higher natural
frequencies is slightly slower than that of lower natural frequencies. For any of the boundary conditions, 20
polynomials provided better than 10�10 accuracy. In addition, unlike the case for the Euler–Bernoulli beams,
increased number of polynomials did not cause degrading accuracy. This is due to the fact that the
Timoshenko beam equations are only second order, and the calculation of the second-derivative matrix (D2)
causes less numerical error at higher number of polynomials.

Fig. 4 shows the first five mode shapes of Timoshenko beams and associated natural frequencies. The
natural frequencies are scaled with respect to the first natural frequency of Timoshenko beams with the same
geometry and boundary conditions obtained from Newton’s shooting method.
6. Application of the spectral-Tchebychev technique

To demonstrate the application of the spectral-Tchebychev technique, four different beam problems are
solved. First, the modes of tapered Timoshenko beams with varying taper ratio and different boundary
conditions are considered, and the natural frequencies are compared to those from Newton’s shooting
method. Next, a linear Euler–Bernoulli beam problem with elastic support and spatially varying sinusoidal
forcing is solved. This is followed by solving two nonlinear beam problems, including an Euler–Bernoulli
beam with large deflections, and a micro-beam with electrostatic forcing. For the case of the nonlinear beams,
the results are compared to those from the literature.

In each case, the problems are nondimensionalized, and for the cases presented below (both linear and
nonlinear), when a time integration is required due to a time-dependent forcing function, a stiff (implicit)
solver (ode15s in Matlabs) is used. The absolute and relative tolerances for the solver are both set to
1� 10�7. This implicit solver is appropriate since the beam problems presented below are evolving in a time
scale much longer than the time scale of the highest modes.
6.1. Dynamics of tapered Timoshenko beams

The spectral-Tchebychev technique presented here can be applied to beams with spatially varying
parameters [45,46]. To demonstrate this application, the eigenvalue problem for tapered Timoshenko beams
with different taper ratios and boundary conditions is solved using the spectral-Tchebychev technique. The
solution is compared to those from Newton’s shooting method (with 10�11 resolution).

Fig. 5 gives the geometry of a tapered, circular cross-section beam with the base diameter of d0, the tip
diameter dL, and the length of L. To calculate the modes of tapered Timoshenko beams, the general
Timoshenko beam equations (Eq. (57)) were used. Due to the change in cross-section along the beam length,
the cross-sectional area A and the area moment of inertia I are functions of the spatial variable x. A new set of
xy

z

dLd0

L

Fig. 5. The geometry of tapered Timoshenko beams.
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nondimensional equations are derived considering these spatially varying parameters as

½AðxÞðy0 � cÞ�0 � wpAðxÞ €y ¼ f ðx; tÞ; 0oxo1, (83)

sp½IðxÞc
0
�0 þ AðxÞðy0 � cÞ � wpIðxÞ €c ¼ Cðx; tÞ; 0oxo1, (84)

where

x ¼ x�=L; y ¼ y�=L; t ¼ t�o0; c� ¼ c; AðxÞ ¼ Aðx�Þ=L2; IðxÞ ¼ Iðx�Þ=L4,

wp ¼
rL2o2

0

ksG
; f ¼ �

f �

ksGL
; sp ¼

E

ksG
; C ¼ �

C�

ksGL2
. (85)

To solve this problem while retaining the self-adjointness (symmetry) of the system, Galerkin’s method was
applied as in Eq. (43). Eqs. (73) and (74) were thus modified as

hTy ½ðVAQ2 þ V0AQ1Þy� ðVAQ1 þ V0AÞw� wpVA €y� Vf� ¼ 0, (86)

hTc½spðVIQ2 þ V0IQ1Þwþ VAðQ1y� wÞ � wpVI
€w� VW� ¼ 0, (87)

where VP is the inner-product matrix associated with the parameter(s) P. The derivatives in Eq. (83) were
expanded following the chain rule, which requires the inner products of the differentiated parameters V0P. This
is performed as Z ‘2

‘1

cðxÞyðxÞPðxÞ0 dx ¼ wTV0Ph. (88)

Differentiation PðxÞ0 was computed in the spatially discretized domain using the Tchebychev differentiation as
described in Eq. (13). Accordingly, the spatially discretized equations of motion become

hTðMs €qþ Ksq� Bsf̃Þ ¼ 0, (89)

where

q ¼
y

w

" #
; h ¼

hy

hc

" #
; f̃ ¼

f

W

� �
(90)

and

Ms ¼ �wp

VA 0

0 VI

" #
; Ks ¼

ðVAQ2 þ V0AQ1Þ �ðVAQ1 þ V0AÞ

VAQ1 spðVIQ2 þ V0IQ1Þ � VA

" #
,

Bs ¼
V 0

0 V

� �
. (91)
Table 1

Natural frequencies (rad/s) of the tapered beam from the spectral-Tchebychev solution with 20 polynomials and error with respect to

Newton’s shooting method calculated from Eq. (82)

Pinned–pinned Fixed–fixed Fixed–pinned Fixed–free

Freq. Error Freq. Error Freq. Error Freq. Error

Mode 1 2256.73 2:5� 10�10 6359.84 7:1� 10�10 5566.47 1:8� 10�10 3212.34 7:9� 10�11

Mode 2 11 266.55 3:6� 10�10 16 758.16 1:4� 10�9 15 053.76 3:2� 10�10 9434.58 4:1� 10�11

Mode 3 24 452.37 4:7� 10�10 31 716.97 3:4� 10�9 29 078.93 4:8� 10�10 20 102.38 3:2� 10�10

Mode 4 41 981.44 7:7� 10�10 50 709.65 9:1� 10�9 47 228.21 8:8� 10�10 35 159.69 1:6� 10�9

Mode 5 63 400.20 1:8� 10�10 73 204.28 2:2� 10�8 69 004.32 2:2� 10�9 54 208.93 4:8� 10�9
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Natural frequencies can be computed from the system matrices Ms and Ks. To simulate the response to a
forcing function, the state-space matrices could be formed using these system matrices as described in Eqs. (37)
and (38). It should be noted here that the equations of motion given in Eq. (83) can be used for any beam with
smooth uniform or nonuniform geometry, and for beams with varying material properties along the axis. If
there are nonsmooth variations on the boundary, i.e., if one of the functions describing the beam geometry
and material properties is not infinitely differentiable, Gibbs phenomenon will be observed [41] which
deteriorates the convergence of the solution. Nonsmooth problems can be handled using a form of component
ω2 = 4.9924

ω3 = 10.8353 ω3 = 4.9871 ω3 = 5.2249 ω3 = 6.2579

ω4 = 18.6028

ω5 = 11.5104 ω5 = 12.3964 ω5 = 16.8752ω5 = 28.0938

ω4 = 7.9734 ω4 = 8.4844 ω4 = 10.9452
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ω0 = 2256.73  rad/sec
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Fixed-Fixed
ω0 = 6359.84  rad/sec

Fixed-Free
ω0 = 3212.34 rad/sec

ω1 = 1 ω1 = 1 ω1 = 1 ω1 = 1

ω2 = 2.6350 ω2 = 2.7044 ω2 = 2.9370

Fig. 6. First five mode shapes and normalized natural frequencies of tapered Timoshenko beams with various boundary conditions. The

natural frequencies are calculated using spectral-Tchebychev solution and normalized with respect to the first natural frequency o0

obtained from Newton’s shooting method.
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mode synthesis by defining boundaries at the locations where nonsmooth variations are present. By using the
component mode synthesis, Gibbs phenomenon can be avoided and a rapid convergence is obtained.

Table 1 provides the first five natural frequencies of a tapered beam with a taper ratio of 5 for four different
boundary conditions. Also given is the difference between the natural frequencies calculated from Newton’s
shooting method and spectral-Tchebychev solutions. The following physical parameters were used for the
calculations:

L ¼ 0:4m; d0 ¼ 0:04m; dL ¼ 0:008m,

E ¼ 160GPa; r ¼ 2300 kg=m3; n ¼ 0:3; ks ¼ 0:886. (92)

It is seen that the error in the natural frequencies from 20 polynomials spectral-Tchebychev solution with
respect to Newton’s shooting method is less than 2:2� 10�8 for any of the boundary conditions. Fig. 6 gives
the mode shapes obtained from the spectral-Tchebychev technique for the tapered beams.

Various parametric analysis can be easily conducted using the numerically efficient spectral-Tchebychev
solution. As an example, a study of the effect of taper ratio and tapered-beam length on the natural
frequencies was performed. Fig. 7(a) gives the change in first three natural frequencies with increasing taper
ratio, where the beam geometric parameters were L ¼ 0:4 and d0 ¼ 0:04m for a fixed–free boundary
condition. Fig. 7(b) gives the change in the first natural frequency with the taper ratio for three different beam
lengths for the same boundary condition. Again, obtaining these solutions did not require re-derivation of the
solutions.

6.2. An Euler– Bernoulli beam with elastic support and spatially varying forcing

In this section, the application of the spectral-Tchebychev technique to an Euler–Bernoulli beam with elastic
boundary condition and spatially varying forcing function is demonstrated. Fig. 8 illustrates the beam and its
boundary conditions.

To apply the spectral-Tchebychev technique to this problem, the boundary coefficients were set to

b010 ¼ L; b020 ¼ 1; a01 ¼ a02 ¼ 0,

bL12 ¼
EI

L
; bL23 ¼ �

EI

L2
; bL20 ¼ �kL; aL1 ¼ 0; aL2 ¼ �cLo0 _y, (93)

where c is the damping coefficient and k is the stiffness. All other b’s were set to zero. The nondimensional
forcing function f ðx; tÞ on the right-hand side of Eq. (48) was specified as

f ðx; tÞ ¼ F0
L3

EI
sinðxpÞ sinðotÞ, (94)
L

c

x

f(x,t) = F0 sin(πx) sin(ωt)
EI
L3

k

Fig. 8. An Euler–Bernoulli beam with elastic support and spatially varying forcing.
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Fig. 10. Operating deflection shapes at (a) o1=o0 ¼ 3:80, (b) o2=o0 ¼ 9:75, and (c) o3=o0 ¼ 12:80.
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where F0 is the force amplitude and o is the excitation frequency. For this problem, a rectangular micro-beam
with a length of L ¼ 500mm, a width of w ¼ 18mm, a thickness of h ¼ 2:25mm, a density of r ¼ 2300 kg=m3,
and Young’s modulus of E ¼ 160GPa was used. The (nondimensional) stiffness and the damping coefficients
were specified as

k ¼ 0:4
L3

EI
and c ¼ 0:3

L3

EI
o0. (95)

As seen from the boundary coefficients, the damping and stiffness elements were taken into account through
the boundary conditions. For the damping element, the _y term was calculated at every time-integration step.
Similarly, the temporal portion of the forcing function was evaluated at every integration step. On the other
hand, the spatial distribution of the forcing function was considered by Gauss–Lobatto sampling as

f ¼
L3

EI
F 0fs sinot, (96)

where fs is the spatially sampled part of the forcing function.
Fig. 9 gives the nondimensional response amplitude at x ¼ L as a function of the nondimensional excitation

frequency. The first natural frequency of the fixed–free beam (o0 ¼ 76190:13 rad=s) was used to
nondimensionalize the excitation frequency and the time. In Fig. 10, the operating deflection shapes at
three frequencies ((a) o1=o0 ¼ 3:80, (b) o2=o0 ¼ 9:75, (c) o3=o0 ¼ 12:80) are given at the instant when the
maximum tip displacement is reached. The nondimensional tip response is given as a function of
nondimensional time for the same three frequencies in Fig. 11. It is seen that the spectral-Tchebychev
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technique can effectively simulate such a problem with elastic boundary condition, damping, and spatially and
temporally varying forcing function.

6.3. Nonlinear behavior of a large-deflection Euler– Bernoulli beam with immovable ends

To demonstrate the applicability of spectral-Tchebychev technique to nonlinear beams, the nonlinear
behavior of an Euler–Bernoulli beam with immovable ends is considered for different boundary conditions.
The results were compared with those given in Ref. [47] for a combined modal/finite element solution.

For a beam with immovable ends, the length of the beam has to increase to accommodate the deflection of
the beam. When the beam is subjected to deflections larger than the beam thickness, the forces arising from
this stretching effect induce nonlinear behavior. Many researchers studied this problem using analytical
(e.g., Refs. [48,49]), perturbation (e.g., Ref. [50]), variational (e.g., Ref. [51]), Galerkin (e.g., Refs. [19,52]), and
finite element (e.g., Refs. [47,53,54]) methods.

The nonlinear boundary-value problem for large-deflection Euler–Bernoulli beam with uniform geometry
can be written as [48]

m €yþ y0000 � ðS0 þ S1Þy
00 ¼ f ð0pxp1Þ, (97)
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where m and f are defined in Eq. (50), and

S0 ¼
P0L

2

EI
; S1 ¼

AL2

2I

Z 1

0

ðy0Þ2 dx. (98)

Here, S1 is the nondimensional axial stretching force, and P0 is the axial force applied to the beam. S0 is the
nondimensional form of the axial force P0.

Applying the Gauss–Lobatto sampling and Tchebychev derivatives and definite integration, the spatially
discretized form of Eq. (97) can be given as

m€yþQ4y� ðS0 þ S1ÞQ2y ¼ f, (99)

where

S1 ¼
AL2

2I
vTCF ðy

0Þ
2. (100)

Here, v is the definite integral vector given in Eq. (14). Substitution of projection in Eq. (25) and application of
Galerkin’s method to Eq. (99) results in

€z ¼ �M�1z Kzz�M�1z Ma €a�M�1z KaaþM�1z Bf, (101)

where

Mz ¼ mPTVP; Kz ¼ PT½VQ4 � ðS0 þ S1ÞVQ2�P,

Ma ¼ mPTVR; Ka ¼ PT½VQ4 � ðS0 þ S1ÞVQ2�R; B ¼ PTV. (102)

It can be seen that the stiffness matrix Kz and the forcing term Ka depend on the stretching force S1. When
simulating this problem, the stretching force and Kz and Ka were calculated at every integration step.

In nonlinear beam problems, the ratio of the first fundamental frequency of the nonlinear beam to the first
natural frequency of the corresponding linear beam changes with the steady-state amplitude. The first
fundamental frequency of the nonlinear beam is the frequency for which the maximum steady-state amplitude
is reached (similar to the case in Fig. 15). Fig. 12 shows the change in the ratio of the first fundamental
frequency of the nonlinear beam to the first natural frequency of the corresponding linear beam with increased
ratio of the steady-state response amplitude a to the radius of gyration r for three different boundary
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conditions. For this problem, the constant axial force S0 and the external force f were set to zero. It is seen that
the increased steady-state response amplitude increases the natural frequency. This trend closely matches that
in Ref. [54].

As another example, the harmonic response of the large-deflection Euler–Bernoulli beam was considered.
A forcing function with uniform spatial distribution and with a time-dependent amplitude as

f � ¼ F 0 sinð2pf et
�Þ (103)

was applied to the beam. During the simulation, the forcing function was evaluated at every integration step.
Fig. 13 shows the time domain response, phase graph, and power spectral density at two different excitation
frequencies (f e1 ¼ 10Hz and f e2 ¼ 22:5Hz) for a pinned–pinned beam with F0 ¼ 500N/m. The same plots are
given in Fig. 14 for a fixed–fixed beam at f e1 ¼ 18:75Hz and f e2 ¼ 105Hz and with F 0 ¼ 1000N=m.
Furthermore, Fig. 15 gives the change in response amplitude with the frequency, and shows the well-known
jump phenomenon. Beam parameters given in Ref. [47] were used in the analysis and the results presented here
correspond to those given in Ref. [47]; the agreement between the spectral-Tchebychev results and those from
Ref. [47] is excellent.
6.4. A micro-beam with electrostatic excitation

In this section, the application of the spectral-Tchebychev technique to modeling a micro-beam with
electrostatic excitation is demonstrated. Electrostatic excitation is a common technique used for micro-
electromechanical systems (MEMS) [55]. Beams with electrostatic excitation are utilized in various sensors and
actuators. The electrostatic force depends nonlinearly on the dynamic gap between the beam and the electrode
on the substrate. Therefore, the response of the micro-beams under electrostatic excitation is nonlinear.
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An Euler–Bernoulli beam with electrostatic excitation, stretching force, and damping (arising from the gas
surrounding the micro-beam) can be given as

m €yþ c _yþ y0000 � ðS0 þ S1Þy
00 ¼ f sðx; tÞ ð0pxp1Þ, (104)
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where

c ¼
c�L4o0

EI
; f sðx; tÞ ¼ �0b

2V2
a

ðg0 � yÞ2
L

EI
. (105)

Here c� is the damping coefficient per unit length, �0 is the permittivity constant, b is the beam thickness, V a is
the applied voltage, and g0 is the initial gap between the beam and the substrate.

When voltages greater than the so-called pull-in voltage are supplied, the beam collapses onto the substrate
electrode. The time it takes between the voltage application and occurrence of pull-in is highly sensitive to the
ambient pressure. This problem was studied by Hung and Senturia [56], where the experimental and modeling
results were shown to agree. They used Galerkin’s method with basis functions obtained from finite element
solution to model the nonlinear behavior of the beam.

In solving this problem using the spectral-Tchebychev technique, Eq. (104) is spatially discretized using
Gauss–Lobatto sampling and Tchebychev derivatives and integrations as

m€yþ c_yþQ4y� ðS0 þ S1ÞQ2y ¼ Fs. (106)

The terms S1, and Fs are computed at every time-integration step for each Gauss–Lobatto points.
The dependence of pull-in time on the ambient pressure is given in Fig. 16. The figure shows the

experimental data and the results from Ref. [56], as well as the results of the spectral-Tchebychev model using
the same parameters and boundary conditions as in Ref. [56]. The spectral-Tchebychev model matches very
closely with the results from both the experimentation and the model of Hung and Senturia.
7. Summary and conclusions

This paper presented a new spectral-Tchebychev technique for solving linear and nonlinear beam problems.
The technique uses orthogonal Tchebychev polynomials as basis functions, and applies Galerkin’s method to
obtain the solution. After describing the properties of the Tchebychev polynomials and associated series
expansion, the derivation of the solution for the wave equation, the Euler–Bernoulli beam problem, and the
Timoshenko beam problem was outlined. For self-adjoint problems, the system matrices obtained from the
spectral-Tchebychev technique were symmetric, indicating that the technique is equivalent to the variational
approaches for self-adjoint problems. This is an important property that insures the numerical robustness of
the spectral-Tchebychev technique.

The numerical accuracy and convergence characteristics of the technique were studied by solving eigenvalue
problems for Euler–Bernoulli and Timoshenko beams with different boundary conditions, and comparing the
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modes to those from Newton’s shooting method. It was seen that the convergence is exponential, and only a
small number of polynomials is sufficient to obtain the machine-precision accuracy.

The application of the technique was then demonstrated on two linear problems. First, the natural
frequencies and the mode shapes of a tapered Timoshenko beam with different boundary conditions were
determined with the spectral-Tchebychev technique. The solution was compared with Newton’s shooting
method and it was observed that machine precision accuracy was obtained. Next, an Euler–Bernoulli beam
with spatially and temporally varying forcing function, elastic boundary, and damping was analyzed.

Two nonlinear problems from the literature were also considered to demonstrate the effectiveness of the
solution. The first problem included a large-deflection Euler–Bernoulli beam with different boundary
conditions. The second problem included a micro-beam with (nonlinear) electrostatic excitation and stretching
force. For both cases, the solutions obtained using the spectral-Tchebychev technique were in an excellent
agreement with those from the literature.

In conclusion, the spectral-Tchebychev technique derived here is a numerically efficient and accurate
approximate solution applicable to a wide range of linear, nonlinear, self-adjoint, and nonself-adjoint beam
problems. Furthermore, the solution can be applied to beams with nonuniformly varying parameters and
different boundary conditions without need for re-derivation.
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Appendix A. Forward and backward transform matrices

Consider the truncated Tchebychev expansion of a function yðxÞ,

yðxÞ ¼
XN�1
k¼0

akTkðxÞ. (A.1)

Let fxjg
N
j¼1 be N scaled Gauss–Lobatto points (see Eq. (8)). Evaluating (A.1) at these points

y0

y1

..

.

yN�1

2
666664

3
777775 ¼

T0ðx0Þ T1ðx0Þ T2ðx0Þ � � � TN�1ðx0Þ

T0ðx2Þ T1ðx1Þ T2ðx1Þ � � � TN�2ðx1Þ

..

. ..
. ..

. . .
. ..

.

T0ðxN�1Þ T1ðxN�1Þ T2ðxN�1Þ � � � TN�1ðxN�1Þ

2
666664

3
777775

a0

a1

..

.

aN�1

2
66664

3
77775. (A.2)

Here, the N �N coefficient matrix on the right-hand side is the backward transform matrix CB. It follows
from Eq. (7) that CF ¼ C�1B .

Appendix B. Differentiation matrix

The derivative of each Tchebychev polynomial can be recursively expressed in terms of lower-order
Tchebychev polynomials (see Eq. (11)). Using the recursive relations, the differentiation matrix D defined on
ð�1; 1Þ can be calculated from

T 00ðxÞ ¼ 0, (B.1)

T 01ðxÞ ¼ T0ðxÞ, (B.2)

T 02ðxÞ ¼ 4T1ðxÞ, (B.3)
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T 02k�1ðxÞ ¼
Xk�1
m¼1

2ð2k � 1ÞT2m þ ð2k � 1ÞT0ðxÞ; k41, (B.4)

T 02kðxÞ ¼
Xk

m¼1

4kT2m�1; k41. (B.5)

The differentiation matrix D defined on ð‘1; ‘2Þ is given by D ¼ 2=ð‘2 � ‘1ÞD.
Appendix C. Definite integral matrix

The integral of a scaled Tchebychev polynomial can be given as

Z ‘2

‘1

TkðxÞdx ¼

2

1� k2

‘2 � ‘1
2

; k odd;

0; k even.

8<
: (C.1)

Thus for a function f ¼
PN

k¼0 akTkðxÞ, the definite integral can be computed asZ ‘2

‘1

f ðxÞdx ¼
XN

k¼0

ak

Z ‘2

‘1

TkðxÞdx ¼ vTa. (C.2)

Here the kth element of the vector v introduced in Eq. (14) is given by fvgk ¼
R ‘2
‘1
TkðxÞdx.
Appendix D. Inner-product matrix

Let fN and gN are values of the functions f ðxÞ and gðxÞ at N Gauss–Lobatto points. Since the product of
interpolated functions have order 2N, the N vectors fN and gN are interpolated to have 2N points

f2N ¼ S2fN . (D.1)

Here S2 ¼ CB2N
½IN ;ON �CFN

, where CB2N
is the 2N � 2N dimensional backward transform matrix, IN and ON

are the N �N dimensional identity and zero matrices, respectively. Let the matrix fd;2N has the values of f2N at
its diagonal, then the values of the product hðxÞ ¼ f ðxÞgðxÞ at 2N Gauss–Lobatto points are given by

h2N ¼ fd;2Ng2N .

The inner product between f ðxÞ and gðxÞ is calculated using the definite integral vector v2NZ ‘2

‘1

hðxÞdx ¼ vT2NCF2N
fd;2Ng2N

¼ fT2Nvd ;2Ng2N . (D.2)

Here vd ;2N is a diagonal matrix that has the values of vT2NCF2N
at its diagonal. Equivalently,Z ‘2

‘1

hðxÞdx ¼ fTNVgN , (D.3)

where the inner-product matrix V ¼ ST
2 vd ;2NS2.

The inner-product matrix is slightly different when the differential equation has variable coefficients. In this
case a weighted inner product is defined with the variable coefficient being the weighting function. Considering
the functions f ðxÞ and gðxÞ, and the weighting function gðxÞ, a similar approach is used to obtain the inner
product. All functions f ðxÞ, gðxÞ, and gðxÞ are assumed to be expanded using N-Tchebychev polynomials. Let
fN , gN , and cN be the values of the corresponding function at N Gauss–Lobatto points. The product of
Tchebychev expansion of three functions has an order of 3N. The values of the functions at N Gauss–Lobatto
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points are extrapolated to 3N points to better approximate the inner product such that

f3N ¼ S3fN . (D.4)

Here, S3 ¼ CB3N
½IN ;ON ;ON �CFN

. The product f ðxÞgðxÞgðxÞ at 3N Gauss–Lobatto points is given by

h3N ¼ fd;3Ncd ;3Ng3N , (D.5)

where fd;3N and cd;3N are 3N � 3N matrices that have the values of f3N and c3N at their diagonals, respectively.
Using this, the weighted inner product between f ðxÞ and gðxÞ is defined asZ ‘2

‘1

f ðxÞgðxÞgðxÞdx ¼ fTNVggN , (D.6)

where Vg ¼ ST
3 vd;3Ncd ;3NS3.

Appendix E. Symmetric mass and stiffness matrices

To prove the symmetry of M and K matrices of Eqs. (17) and (18), the self-adjointness of the stiffness
operator is stated as Z ‘2

‘1

c1ðxÞmc
00
2ðxÞdx ¼

Z ‘2

‘1

c2ðxÞmc
00
1ðxÞdx, (E.1)

where c1ðxÞ and c2ðxÞ are two functions that satisfy the homogeneous boundary conditions. If c1ðxÞ and
c2ðxÞ are expressible exactly with N-Tchebychev polynomials, considering that they satisfy the homogeneous
boundary conditions, they can be written in the spatially discretized space as Pw1 and Pw2, where P is the
projection matrix given in Eq. (25). Therefore, the inner products in Eq. (E.1) can be written asZ ‘2

‘1

c1ðxÞmc
00
2ðxÞdx ¼ wT

1P
TVQ2Pw2 ¼ wT

1Kw2, (E.2)

Z ‘2

‘1

c2ðxÞmc
00
1ðxÞdx ¼ wT

2P
TVQ2Pw1 ¼ wT

2Kw1. (E.3)

These inner products are calculated exactly since the derivative matrix Q2 and inner-product matrix V are
calculated exactly for functions expressible by Tchebychev polynomials. Eqs. (E.1) and (E.2) entail

wT
1Kw2 ¼ wT

2Kw1, (E.4)

which can be true only if K ¼ KT, i.e., K is symmetric. A similar approach can be followed to prove that the mass
matrix M is also symmetric. Mass and stiffness matrices of more general problems, including problems with
variable coefficients, and the various types of beam problems can be shown to be symmetric using this approach.

Appendix F. Projection matrices (basis recombination)

Consider a spatially discretized boundary value problem with the differential equation

Ly ¼ f, (F.1)

where L is the differential operator, and the boundary conditions

by ¼ a. (F.2)

All y’s that satisfy Eq. (F.2) can be given by

y ¼ wþ q. (F.3)

Here w is a vector in the null space of b, and q is the unique vector in the null-perpendicular space of b such
that bq ¼ a. The null and null-perpendicular spaces can be found by using the singular value decomposition of
b. Setting b ¼ USVT, whereU andV are unitary matrices and S is a matrix with the singular values of b in its
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diagonal, the unique q can be determined using Eq. (F.2) as

USVTq ¼ a, (F.4)

SVTq ¼ UTa, (F.5)

SSTw2 ¼ UTa, (F.6)

w2 ¼ ðSS
TÞ
�1UTa, (F.7)

w1 ¼ STðSSTÞ
�1UTa, (F.8)

q ¼ Ra. (F.9)

In the above relations, w1 ¼VTq, w1 ¼ STw2, and R ¼VSTðSSTÞ
�1UT.

The left singular vectors that correspond to zero singular values span the null space of b. V is a matrix with
N columns

V ¼ ½v1 v2 � � � vN �. (F.10)

Since, in the case of wave equation, rank of b is 2, the columns of P ¼ ½v3 v4 � � � vN � span the null span of b.
In this case, for an arbitrary vector z, w ¼ Pz. The particular z that also satisfies the algebraic equation (F.1) is
the solution. Rewriting Eq. (F.3)

y ¼ Pzþ Ra. (F.11)
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